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Picard-Fuchs operators for octic
arrangements I

(The case of orphans)∗
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†
and Duco van Straten

‡

We report on 25 families of projective Calabi-Yau threefolds that
do not have a point of maximal unipotent monodromy in their
moduli space. The construction is based on an analysis of certain
pencils of octic arrangements that were found by C. Meyer [35].
There are seven cases where the Picard-Fuchs operator is of order
two and 18 cases where it is of order four. The birational nature
of the Picard-Fuchs operator can be used effectively to distinguish
between families whose members have the same Hodge numbers.

1. Introduction

The phenomenon of mirror symmetry among Calabi-Yau threefolds has at-

tracted a lot of attention and has led to major developments in mathemat-

ics and physics, see e.g. [26], [24]. Especially the marvelous discovery by P.

Candelas, X. de la Ossa and coworkers [8] of the relation between enu-

meration of rational curves on a Calabi-Yau threefold and period integrals

on another mirror manifold has been an inspiration to many researchers.

Both the determination of instanton numbers in [8] and the construction

of mirror pairs by V. Batyrev [5] as generalised by M. Gross and B.

Siebert [22], depend on families of Calabi-Yau manifolds that degenerate

at the boundary of their moduli space at a point of maximal unipotent mon-

odromy (MUM), [36]. In many natural families of Calabi-Yau threefolds, like

hypersurfaces in toric varieties defined by reflexive polytopes, there do exist

such MUM-points in their moduli space.
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However, it has been known for some time that there are quite simple
examples of one-parameter families

f : Y −→ S

of Calabi-Yau threefolds for which there are no such MUM points. First
examples of this kind were described by J.-C. Rohde [40] and later by
A. Garbagnati and B. van Geemen [20]. However, these examples are
somewhat atypical in the sense that the cohomological local system H =
R3f∗(C) decomposes as a tensor product

H = F⊗ V,

where F is a constant VHS with Hodge numbers (1, 0, 1) and V a variable
(1, 1)-VHS. As a consequence, although the cohomology space is four dimen-
sional, the Picard-Fuchs operator is of order two, and Rohde [41] asked the
question if there exist examples where the Picard-Fuchs operator had order
four.

In [47] we described an example of such a family, but the members of that
family had the defect of not being projective. W. Zudilin [54] suggested
to name orphan to describe such families, as they do not have a MUM. We
decided to follow his suggestion, and in this paper we will describe a series of
new orphans which have the virtue of being projective as well. The first such
example was announced in [13] and has the full symplectic group Sp4(C) as
differential Galois group.

Main result

There exist at least 10 birationally unrelated families of projective orphans
with Picard-Fuchs operator of order four.

For a precise definition of the notion of related families we refer to the
discussion in section 7.

We also want to point out two interesting phenomena that we discovered
during the analysis of the examples.

• We found one new (conjectural) instance of a Calabi-Yau threefold
with a Hilbert modular form of weight (4, 2) and level 6

√
2, much

like the famous example of Consani and Scholten, [10]. (Hilbert
modularity for that example was shown in [16].)

• We found an example of cohomology change in a family of Calabi-Yau
threefolds at a point with monodromy of finite order. As a consequence,
the central fibre of any semi-stable model is reducible, contrary to what
happens in families of K3-surfaces, according to Kulikovs theorem.
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2. Double octics

By a double octic we understand a double cover Y of P3 ramified over a
surface of degree 8. It can be given by an equation of the form

u2 = f8(x, y, z, w)

and thus can be seen as a hypersurface in weighted projective space P(14, 4).
For a general choice of the degree eight polynomial f8 the variety Y is a
smooth Calabi-Yau space with Hodge numbers h11 = 1, h12 = 149. When the
octic f8 is a product of eight linear factors, we speak of an octic arrangement.
These form a nine dimensional sub-family and for these, the double cover
Y has singularities at the intersections of the planes. In the generic such
situation Y is singular along 8.7/2 = 28 lines, and by blowing up these
lines (in any order) we obtain a smooth Calabi-Yau manifold Ỹ with h11 =
29, h12 = 9.

By taking the eight planes in special positions, the double cover Y ac-
quires further singularities. As explained in [35], if the arrangement does not
have double planes, fourfold lines or sixfold points, there exist a diagram

Ŷ Y

P̂3 P3

π̂

2:1 2:1

π

where π is a sequence of blow ups, π̂ a crepant resolution, and the vertical
maps are two-fold ramified covers.

In this way a myriad of different Calabi-Yau threefolds Ŷ can be con-
structed. One of the nice things is that one can read off the Hodge number
h12 as the dimension of the space of deformations of the arrangements that
do not change the combinatorial type, [12]. In his doctoral thesis [35], C.

Meyer found 450 combinatorially different octic arrangements, determined
their Hodge numbers and started the study of their arithmetical properties.

Among these 450 arrangements there were 11 arrangements with
h12(Ŷ ) = 0, so lead to rigid Calabi-Yau threefolds and 63 one-parameter
families of arrangements with h12(Ŷt) leading to one-parameter families (all
defined over Q) of Calabi-Yau threefolds, parametrised by P1: for general
t ∈ P1, the crepant resolutions

Ŷt Yt
π̂
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of the double octics Yt can be put together into a family Y over S := P1 \Σ,
where Σ ⊂ P1 is a finite set of special values, where the combinatorial type of

the arrangement changes. At these points, the configuration becomes rigid,

or ceases to be of Calabi-Yau type: the arrangement contains a double plane,

a fourfold line or a sixfold point. When we use the sequence of blow-ups to

resolve the generic fibre and apply this to all members of the family, we

arrive at a diagram of the form

Ŷ Ŷ

S P1

f f

where f is a smooth map, with fibre Ŷt, a smooth Calabi-Yau threefold with

h12 = 1. In general, the fourfold Ŷ will have singularities sitting over the

special points s ∈ Σ.

Recently, in [15] the analysis of Meyer was found to be complete and

only three further examples with h12 = 0 exist over number fields and there

is one further example of a family with h12 = 1, defined over Q(
√
−3).

Furthermore, in that paper various symmetries and birational maps between

different arrangements were found.

We will take a closer look at these 63 Meyer-families. In order to fa-

cilitate comparison with literature, we will keep the numbering from [35].

In four cases (arrangements 33, 155, 275, 276) small adjustments in the

parametrisation of the family were made.

Although arithmetical information on varieties in these families is readily

available via the counting of points in finite fields, we found it extremely hard

to understand details of the resolution and topology from the combinatorics

of the arrangements. For example, the Jordan type of the local monodromy

around the special points turned out to be very delicate. In particular, we

failed to find a clear combinatorial way to recognise the appearance of a

MUM-point.

As an example, we look at configuration 69 of Meyer. It consists of

six planes making up a cube, with two additional planes that pass through

a face-diagonal and opposite vertices of the cube, as in the following pic-

ture.
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Arrangement 69

The configuration is rigid and its resolution is a rigid Calabi-Yau with h11 =
50, h12 = 0.

By sliding the intersection point at the corner of one of the two planes,
we arrive at configuration 70, with h11 = 49, h12 = 1. Clearly, this pencil
contains another rigid configuration, namely arrangement 3.

Family of arrangements 70 and arrangement 3

But there are also two degenerations involving two double planes and
it is not so clear what the corresponding fibres of the semi-stable reduction



6 S�lawomir Cynk and Duco van Straten

look like, nor were we be able to determine topologically the monodromy
around these points. It turns out this family is one of the simplest orphans
we know of and in this paper we will be dealing with the 25 cases without
such a MUM-point and which thus do not make it onto the list of Calabi-
Yau operators [3], [1], [9]. In the sequel [14] to this botanical paper, we will
report on Picard-Fuchs operators for the remaining 38 MUM-cases.

3. (1, 1, 1, 1)-variations

In this section we recall some general facts on Variations of Hodge Structures
that can be found for instance in the book by Peters and Steenbrink [38].
For the particular case of (1, 1, 1, 1)-variations we refer to the paper Calabi-
Yau operators [48].

3.1. Generalities

Let us consider more generally a fibre square diagram

Y Y

S P1

f f

where f : Y −→ S := P1\Σ is a smooth proper map of Calabi-Yau threefolds.
The datum of the local system

HC := R3f∗CY

is equivalent, after choice of a base point s ∈ S, to that of its monodromy
representation

ρ : π1(P
1 \ Σ, s) −→ Aut(H3(Ys,C)).

There is an underlying lattice bundle HZ, coming from the integral coho-
mology and a non-degenerate skew-symmetric intersection pairing, causing
this representation to land in

Aut(H3(Ys,Z)/torsion) = Spm(Z), m = dimH3(Ys).

Furthermore, H carries the structure of a polarised variation of Hodge
structures (VHS), meaning basically that the fibres Ht = H3(Yt,C) of the
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local system carry a pure (polarised) Hodge structure with Hodge numbers
(1, h12, h12, 1). It is a fundamental fact, proven by Schmid [43], that one may
complement this VHS defined on P1 \Σ by adding for each s ∈ Σ a so called
Mixed Hodge Structure (MHS) (Hs,W•, F •). Here Hs is a Q-vector space
that can be identified with the sections of the Q-local system HQ over an
arbitrary small slit disc centered at s. The local monodromy transformation
T := Ts : Hs → Hs at s can be written as

T = US

where U is unipotent and S is semi-simple. The monodromy logarithm

N = − logU = (1− U) +
1

2
(1− U)2 +

1

3
(1− U)3 + . . .

is nilpotent and determines a weight filtration W• on Hs which is charac-
terised by the property that N : Wk → Wk−2 and

Nk : GrWd+kHs
�−→ GrWd−kHs.

The Hodge filtration F • in Hs ⊗C arises as limit from the Hodge filtration
on the spaces Ht, when t �→ s, and it is a fundamental fact that for each
s ∈ Σ the F • defines a pure Hodge structure of weight k on the graded
pieces GrWk Hs.

In the geometrical case Steenbrink [46] has constructed this mixed
Hodge structure on Hs using a semi-stable model

D Z Y

{s} Δ P1

f

Here Δ is a small disc, Δ → P1 is a finite covering map, ramified over
one of the s ∈ Σ, Z is smooth and the fibre D over s is a (reduced) nor-
mal crossing divisor with components Di inside Z. The complex of relative
logarithmic differential forms

Ω•
Z/Δ(logD)

can be used to describe the cohomology of the fibres and its extension to Δ.
The complex comes with two filtrations F •, W•, which induces filtrations
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on the hypercohomology groups

Hd(Ω•
Z/Δ(logD)⊗OD),

which then leads to the limiting mixed Hodge structure on Hs. We refer to

[38] for a detailed account.

If the family f : Y → S is defined over Q, there is also a treasure

of arithmetical information associated to the situation. We obtain for each

rational point of P1 \ Σ a Galois-representation on the l-adic cohomology

H3
ét(Yt ⊗Q Q,Ql), and these together make up an l-adic sheaf.

We will be mainly interested in the case where

h12 = 1,

so the local system H on P1 \ Σ is a so-called (1, 1, 1, 1)-variations and its

representations lands in Sp4(Z). In particular, for each of the 63 families of

Meyer, we obtain a family of double octics

0 = u2 − f8(x, y, z, w; t).

By crepant resolution of the general fibre a family (dropping the earlier )̂

we obtain such families

f : Y → S := P1 \ Σ

and from it an associated (1, 1, 1, 1)-variation over P1 \ Σ.
Strictly speaking, an arrangement defined by f8 = 0 does not define a

single family. If we multiply f8 with a t-dependent function ϕ(t), the family

defined by

0 = u2 − ϕ(t)f8(x, y, z, w; t)

is said to be a twist of the family

0 = u2 − f8(x, y, z, w; t)

Although twisting can be crucially important, its effect is usually easy to

analyse, and we will consider families differing by a twist as essentially the

same.
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3.2. Degenerations of (1,1,1,1)-variations

There are four possibilities for the mixed Hodge diamond of the limit-
ing mixed Hodge structures appearing for (1, 1, 1, 1)-VHS. The k-th row
(counted from the bottom) of the diamond gives the Hodge numbers of
GrWk ; the monodromy logarithm operator N acts in the vertical direction,
shifting downwards by two rows. The definition of the weight filtration makes
the diagram symmetric with respect to reflection in the central horizontal
line, whereas complex conjugation is a symmetry of the Hodge-diamond
along the central vertical axis. The numbers in each slope = 1 (so SW-
NE-direction) row of the diagram have to add up to the corresponding
Hodge number of the variation, so are all equal to 1 in our case. Moreover,
by the definition of the weight filtration, the operator N has the property
Nk : GrWd+kHs

�−→ GrWd−kHs, which implies that there cannot be 0 between
two 1’s in the same column. The cases that arise are:

F-point

0
0 0

0 0 0
1 1 1 1

0 0 0
0 0

0

In this case N = 0, so this case occurs if and only if the monodromy is of
finite order. The limiting mixed Hodge structure is in fact pure of weight
three. Often an automorphism of finite order will split the Hodge structure
GrW3 :

(1 1 1 1) �→ (1 0 0 1) + (0 1 1 0)

On the arithmetic side, one expect that when this happens over Q, the
characteristic polynomial of Frobenius will factor as

(1− papT + p3T 2)(1− cpT + p3T 2)

where the ap and cp are Fourier coefficients of resp. a weight 2 and a weight
4 cusp form for some congruence subgroup Γ0(N) of Sl2(Z).

There are also cases where no splitting occurs, but the Euler-factors
are determined by a Hilbert modular form of weight (4, 2) for some real
quadratic extension of Q.
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C-point

0
0 0

0 1 0
1 0 0 1

0 1 0
0 0

0

In this case N 	= 0, N2 = 0 and there is a single Jordan block. The pure

part GrW3 is a rigid Hodge structure with Hodge numbers (1, 0, 0, 1). Fur-

thermore, GrW4 and GrW2 are one-dimensional and are identified via N . This

type appears when a Calabi–Yau threefold acquires one or more ordinary

double points, nowadays often called conifold points, which explains our

name C-type point for it. However, one should be aware that C-point do

occur not only where ordinary nodes appear, but also for many other kinds

of singularities.

On the arithmetical side, one expects to get a 2-dimensional Galois rep-

resentation GrW3 with characteristic polynomial of Frobenius of the form

1− apT + p3T 2,

where the Frobenius traces are Fourier coefficient of a weight 4 cusp form

for a congruence sub-group Γ0(N) of Sl2(Z), for some level N .

K-point

0
0 0

1 0 1
0 0 0 0

1 0 1
0 0

0

In this case we also have N 	= 0, N2 = 0 but there are two Jordan

blocks. In this case the pure part GrW3 = 0 and GrW4 , GrW2 are Hodge

structures with Hodge numbers (1, 0, 1), which are identified via N . The

Hodge structure looks like that of the transcendental part of a K3-surface

with maximal Picard number, which explains our name K-point for it.
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On the arithmetical side, one expects to get a 2-dimensional Galois rep-
resentation GrW2 with characteristic polynomial of Frobenius of the form

1− apT + p2T 2,

where the Frobenius traces are Fourier coefficient of a weight 3 cusp form for
a congruence sub-group Γ0(N) of Sl2(Z), for some level N and character.
Such forms always have complex multiplication (CM). For a nice overview
see [44] and [45].

MUM-point

1
0 0

0 1 0
0 0 0 0

0 1 0
0 0

1

Here N3 	= 0 and there is a single Jordan block of maximal size. The
Hodge structures GrW2k (k = 0, 1, 2, 3) are one-dimensional and necessarily
of Tate type. This happens for the quintic mirror at t = 0 and is one of the
main defining properties of Calabi–Yau operators.

So at a MUM-point, the resulting mixed Hodge structure is an iterated
extension of Tate–Hodge structures. Deligne [17] has shown that the in-
stanton numbers n1, n2, n3, . . . can be seen to encode precisely certain exten-
sion data attached to the variation of Hodge structures near the MUM-point.

4. Picard-Fuchs operators

4.1. Generalities

By a choice of volume forms on the fibres of f : Y → P1 we mean a rational
section ω of the relative dualising sheaf

f∗ωY/P1 .

It restricts to a holomorphic 3-form ω(t) on each regular fibre Yt outside the
divisor of poles and zero’s of ω. If γ(t) ∈ H3(Yt,Z) is a family of horizontal
cycles, defined in a contractible neighborhood U of t ∈ S, the function

Φγ : U → C, t �→
∫
γ(t)

ω(t)



12 S�lawomir Cynk and Duco van Straten

is called a period integral of f : Y → P1. It follows from the finiteness
of the deRham cohomology group H3(Yt,C) by differentiation under the
integral sign that all period functions Φγ(t) satisfies the same linear ordinary
differential equation, called the Picard-Fuchs equation. The corresponding
differential operator is called Picard-Fuchs operator and we will write

P = P(Y, ω) ∈ Q〈t, d
dt
〉.

The order of the operator is clearly at most dimH3(Yt).

In the case of double octics given by an affine equation

u2 − f8(x, y, z, t)

we will always take the volume form

ω :=
dxdydz

u

as three-form and thus the period integrals we are dealing with are

Φγ(t) :=

∫
γ(t)

dxdydz

u
=

∫
γ(t)

dxdydz√
f8

over cycles γ(t) ∈ H3(Yt,Z).

4.2. Determination of Picard-Fuchs operators

We have been using two fundamentally different methods to find Picard-
Fuchs operators for concrete examples.

Conifold expansion method. If in a family of varieties we can locate a
vanishing cycle, then the power series expansion of the period integral can
always be computed algebraically, [13]. The operator is then found from the
recursion of the coefficients.

Especially for the case of double octics, in many of the 63 families one
can identify a vanishing tetrahedron: for a special value of the parameter
one of the eight planes passes through a triple point of intersection, defined
by three other planes. In appropriate coordinates we can write our affine
equation as

u2 = xyz(t− x− y − z)P (x, y, z, t)



Picard-Fuchs operators for octic arrangements I 13

where P is the product of the other five planes and depend on a the pa-
rameter t. We assume P (0, 0, 0, 0) 	= 0. One can now identify a nice cycle
γ(t) in the double octic, which consists of two parts γ(t)+, (u ≥ 0) and
γ(t)−, (u ≤ 0) which project onto the real tetrahedron Tt bounded by the
plane x = 0, y = 0, z = 0, x+ y+ z = t. γ(t)+ and γ(t)− are glued together
at the boundary of Tt, thus making up a three sphere in the double octic.
For t = 0 the tetrahedron and thus the sphere Γ(t) shrink to a point. We
can write

Φγ(t) =

∫
γ(t)

ω = 2F (t)

where

F (t) =

∫
Tt

dxdydz√
(xyz(t− x− y − z)P (x, y, z, t)

= t

∫
T

dxdydz√
(xyz(1− x− y − z)P (tx, ty, tz, t)

,

where we used the substitution (x, y, z) �→ (tx, ty, tz). By expanding the
integrand in a series and perform termwise integration over the simplex
T := T1, the period expands in a series of the form

Φγ(t) = π2t(A0 +A1t+A2t
2 + . . .)

with the coefficients Ai ∈ Q if Pt(x, y, z) ∈ Q[x, y, z, t] and can be computed
explicitly, see [13]. By computing sufficiently many terms in the expansion,
one may find the Picard-Fuchs operator by looking for the recursion on the
coefficients Ai.

Cohomology method. There are many variants for this method, but let
us take for sake of simplicity the case of a smooth hypersurface X ⊂ Pn.
The middle dimensional (primitive) cohomology of X can be identified with
Hn(Pn \ X) and it elements can be represented by residues of n-forms on
Pn with poles along X of the form

PΩ

F k

where F is the defining polynomial for X, Ω = ιE(dV ol) the fundamental
form for Pn, and P is a polynomial such that the above expression is ho-
mogeneous of degree 0. If P runs over the appropriate graded pieces of the
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Jacobi-ring of F , one obtains a basis

ω1, ω2, . . . , ωN

for Hn(Pn \X). If F depends on an additional parameter t, one can differ-
entiate these basis-elements with respect to t and express the result in the
given basis. One obtains thus a differential system

d

dt

⎛
⎜⎜⎝

ω1

ω2

. . .
ωN

⎞
⎟⎟⎠ = A(t)

⎛
⎜⎜⎝

ω1

ω2

. . .
ωN

⎞
⎟⎟⎠

from which one can obtain Picard-Fuchs equations for each ωi. This so-
called Griffiths-Dwork method ([23], [18]) depends on the assumption that
the hypersurface is smooth, so that the partial derivatives ∂iF form a reg-
ular sequence in the polynomial ring. If X has singularities, one no longer
obtains a basis for the cohomology. Rather one has to determine the Koszul-
homology between the partial derivatives and enter into a spectral sequence
and things become more complicated. In [13] we wrote:

Due to the singularities of f8, a Griffiths-Dwork approach is cumber-
some, if not impossible.

It was P. Lairez who proved us very wrong in this respect. His computer
program, described in [34], does not aim at finding a complete cohomology
space, rather it looks for the smallest space stable under differentiation that
contains the given rational differential form. It does so by going through
the spectral sequence given by the pole order filtration, where at each step
Gröbner basis calculations are done to increase the set of basis forms.

For our computations we initially used the method of conifold expansion,
but we discovered soon that

Due to the singularities of f8 the conifold expansion approach is cum-
bersome, if not impossible.

The conifold expansion method has some serious drawbacks. In our im-
plementation computations became too time consuming for operators of high
degree and it could be applied only to families of double octics admitting
a clean vanishing tetrahedron, as explained in [13], which happens only for
about half of the cases. All operators included in the current paper were
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computed with the package of Pierre Lairez. As conifold expansion re-

quires to bring the equation into a preparated form, the computed operators

differ by a coordinate transformation from operators in [14], cf. operator 70.

4.3. Reading the Riemann-symbol

The amount of information that is contained in the Picard-Fuchs operator

P can not be underestimated. The local system HC is isomorphic to lo-

cal system of solutions Sol(P). Already the local monodromies Ts around

the special parameter values s ∈ Σ are hard to obtain from topology or a

semi-stable reduction. But this information can easily be read off from the

operator, by studying the local solutions in series of the form

tα
N∑
k=0

∞∑
n=0

An,kt
n log(t)k.

There is a delicate interaction between P and the Frobenius-operator

(see [19]), so that arithmetical properties of the varieties are tightly linked to

P . It appears that the Picard-Fuchs operator just abstracts away sufficiently

many details of the geometry and retains just the right amount of motivic

information.

We recall that the Riemann-symbol of a differential operator P ∈ C〈t, d
dt〉

is a table recording for each singular point of the differential operator the

corresponding exponents, i.e. solutions to the indicial equation [27]. (In order

to have a non-zero series solution of the type described above, one needs that

α is an exponent at 0.)

We found it convenient to express the operators in terms of the logarith-

mic differentiation

Θ := t
d

dt

and write the operators in Θ-form

P := P0(Θ) + tP1(Θ) + t2P2(Θ) + . . . trPr(Θ), Pr 	= 0

where the Pi are polynomials, in our case of degree four. The exponents at 0

are then just the roots of P0, those of ∞ the roots of Pr, with a minus sign.

To determine the exponents at other points, one just translate this point to

the origin, and re-express the operator in Θ-form.
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The exponents capture the semi-simple part of the monodromy at the
corresponding singular point. The logarithmic terms appearing in the so-
lutions encode the Jordan structure of the unipotent part. In general loga-
rithmic terms may appear between solutions with integer difference in expo-
nents, but in the geometrical context, as a rule, a logarithm appears always
precisely when two exponents become equal.

A C-point can be expected when the exponent are of the form

α− ε α α α+ ε

The archetypical case is 0 1 1 2, indicating the presence of local solutions
of the form

φ0 = 1 + a1t+ . . . , φ1(t) = t+ b1t+ . . . , φ2(t) = log(t)φ1(t) + c1t+ . . . ,

φ3 = t2 + d1t
3 + . . .

as appear in a pure conifold smoothing.

A K-point can be expected to appear when the exponents are of the
form

α α β β, (α < β).

The archetypical case is 0 0 1 1, indicating the presence of local solutions
of the form

φ0 = 1 + a1t+ . . . , φ1(t) = log(t)φ0(t) + b0 + b1t+ . . . ,

φ2(t) = t+ c1t+ . . . , φ3 = log(t)φ1(t) + d1t
1 + . . .

AMUM-point can be expected to appear, when all exponents are equal

α α α α

The archetypical case is 0 0 0 0, with the famous Frobenius basis of
solutions of the form

φ0 = 1 + at+ . . . , φ1(t) = log(t)φ0(t) + . . . , φ2(t) = log(t)2φ0(t) + . . . ,

φ3(t) = log3(t)φ0(t) + . . .

An F -point can be expected in all other cases. If all exponents are
integral (and no logarithms appear) we have trivial monodromy and we
speak of an apparent singularity, if the exponents are not 0 1 2 3,
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which would be the exponents at a regular point. The archetypical apparent
singularity is signaled by the exponents

0 1 3 4.

In general, we will call any F -point with non-equally spaced exponents an
A-point.

When we write the operator P in the form

d4

dt4
+ a1(t)

d3

dt3
+ a2(t)

d2

dt2
+ a3(t)

d

dt
+ a4(t)

where ai(t) ∈ C(t), then the function

Y (t) := e−
1

2

∫
a1(t)dt

is called the Yukawa coupling and its (simple) zero’s typically are apparent
singularities with exponents 0 1 3 4.

5. Birational nature of the Picard-Fuchs operator

5.1. Basic transformation theory

In what follows, we will not distinguish between an operator P and the
operator P ′ = ϕ(t)P obtained from multiplying P by a rational function
ϕ(t), as they determine the same local system of solutions on P1 \ Σ. (Of
course, in the finer theory of D-modules one has to distinguish very well
between P and P ′).

Often one has to make simple transformations on differential operators.

1) The simplest are those induced by Möbius transformations, coming
from fractional linear transformations

t �→ at+ b

ct+ d

of the coordinate in P1. Of course, this just changes the position of the
singular points, the corresponding exponents are preserved. We call two
operators related in this way similar operators.

2) If ω(t) and ω′(t) are two different choices of volume form on the fibres,
then

ω′(t) = ϕ(t)ω(t)
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where ϕ(t) is a rational function. The corresponding Picard-Fuchs operators

P(Y, ω) and P(Y, ω′) will be related in a certain way.

More generally, if y(t) satisfies Py(t) = 0, and φ(t) is a rational function,

then the function Y (t) := φ(t)y(t) will satisfy another differential equation

QY (t) = 0 that is rather easy to determine. We will say that Q is strictly

equivalent to P . Its effect on the Riemann symbol will be a shift of all

exponents by an amount given be the order of φ(t) at the point in question.

For example, the effect of multiplication by t shifts the exponents at 0 one

up, those at ∞ one down.

3) As already mentioned above, if φ(t) is a rational function of t, then

the families of double octics

u2 = f8, and u2 = φ(t)f8

are said to differ by a twist. Replacing φ(t) by φ(t)ϕ(t)2 does not change the

fibration birationally, as can be seen by replacing u by ϕ(t)u. The volume

form

ω :=
dxdydz√

f8

for u2 − f8 and

ω′ :=
dxdydz√
φ(t)f8

for u2 − φ(t)f8 differ by the square root of a rational function

ω =
√

φ(t)ω′

More generally, if y(t) satisfies a differential equation Py(t) = 0, then

Y (t) := φ(t)y(t), where φ(t) is an algebraic function, will satisfy another

differential equation Q that is easy to determine, knowing only P and φ(t).

We will then call P and Q equivalent.

Its effect on the Riemann symbol is also rather easy to understand. If

φ(t) has near a the character of (t − a)ε, then the exponents at a get all

shifted by the amount ε:

α, β, γ, δ �→ α+ ε, β + ε, γ + ε, δ + ε
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4) If we replace t by t = ψ(s) for some function ψ(s) we can rewrite
the operator P in terms of the variable s and obtain an operator ψ∗P in
s, d

ds that we call the pull-back of P along the map ψ. Very common are
pull-backs by the map t = sn, which geometrically is an n-fold covering map
of P1, with total ramification at 0 and ∞. This operation leads to a division
of the exponents at 0 and ∞:

α, β, γ, δ �→ α/n, β/n, γ/n, δ/n

The most general transformations one has to allow are those given by
algebraic coordinate transformations, which are multi-valued maps from P1

to itself. To formulate this properly we need to extend our framework to
include families and operators over an arbitrary algebraic curve.

5.2. Related operators, related families

Let S be an algebraic curve, KS its function field, δ a derivation of KS (a
rational vector field), we denote by KS〈δ〉 the differential algebra generated
by KS and δ. An element of KS〈δ〉 can be written as

P = anδ
n + · · ·+ a1δ + a0

and is called a differential operator of order n on S.

Definition. Let X −→ S be a family of Calabi-Yau manifolds, ω, a rational
section of the relative dualizing sheaf of ωX/S and δ a derivation of KS .
A Picard-Fuchs operator of (X , ω, δ) is an operator P(X , ω, δ) ∈ KS〈δ〉 of
lowest order annihilating all period integrals

∫
γ ω. Such an operator is unique

up to left multiplication by an element of KS .

Definition. Two differential operators P1,P2 ∈ KS〈δ〉 are called strictly
equivalent if there exist v1, v2 ∈ KS \ {0} such that for any u ∈ KS we have

P1(v1u) = v2P2(u).

If Φ : S1 −→ S2 is a dominating morphism of irreducible algebraic
curves, then Φ∗KS2

⊂ KS1
is an algebraic field extension and consequently

for any derivation δ of KS2
there exists a unique derivation Φ∗δ of KS1

satisfying (Φ∗δ)(Φ∗f) = Φ∗(δ(f)) for any f ∈ KS2
.

Given a family of Calabi-Yau manifolds X/S then any two rational sec-
tions ω and ω′ of relative canonical bundle differ by a multiplication by an
element of KS , as a consequence the Picard-Fuchs operators

P(X , ω, δ) and P(X , ω′, δ)
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are strictly equivalent.

Definition. The pullback of an operator

P = anδ
n + · · ·+ a1δ + a0 ∈ KS2

〈δ〉

on an algebraic curve by a dominating morphism Φ : S1 −→ S2 is the
operator

Φ∗P = Φ∗anΦ
∗δn + · · ·+Φ∗a1Φ

∗δ +Φ∗a0 ∈ KS1
〈Φ∗δ〉.

Pullback Φ∗P is the unique operator in KS1
〈Φ∗δ〉 such that Φ∗P(Φ∗f) =

Φ∗(P(f)).

If X −→ S2 is a family Calabi-Yau manifolds, Φ : S1 −→ S2 is a domi-
nating morphism of algebraic curves then

Φ∗P(X , ω, δ) = P(Φ∗X ,Φ∗ω,Φ∗δ).

Definition. Two differential operators P1 ∈ KS1
〈δ1〉, P2 ∈ KS2

〈δ2〉, are
called related if there exist a curve S and dominating morphisms

S S1

S2

p1

p2

and v1, v2 ∈ KS such that for any u ∈ KS

p∗1P1(v1u) = v2p
∗
2P2(u).

Definition. Two projective families f1 : X1 −→ S1 and f2 : X2 −→ S2 are
called related, if there exist a curve S and dominating maps g1 : S −→ S1,
g2 : S −→ S2 and an isomorphism

ϕ : g∗1X1 −→ g∗2X2.

Clearly, if the families X −→ S1 and X −→ S2 are both obtained as pull-
back from a single family over T , then the families are related.

Proposition 1. Picard-Fuchs operators of related families of Calabi-Yau
manifolds are related operators.
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5.3. Birational maps and strict equivalence

We would like to formulate a statement expressing the idea that the Picard-

Fuchs operator is in some sense a birational invariant of a family. We for-

mulate three theorems to this effect.

Proposition 2. Consider X1 −→ S and X2 −→ S two proper smooth fam-

ilies of Calabi-Yau manifolds over an algebraic curve S. Let ω1 and ω2 be

holomorphic volume forms on X1 and X2. If there is a birational map

φ : X1 ��� X2,

then the Picard-Fuchs operators P(X1, ω1, δ) and P(X2, ω2, δ) are strictly

equivalent.

Proof. Let X1 and X2 be fibres over the same general point. Recall that V.

Batyrev [6] proved that if

φ : X1 ��� X2

is a birational map between smooth Calabi-Yau manifolds, then it induces

isomorphisms

φ∗ : Hp,q(X2) → Hp,q(X1)

of Hodge groups. As a consequence, φ induces isomorphisms

φ∗ : Hn(X1,Q) −→ Hn(X2,Q), φ∗ : Hn(X2,Q) −→ Hn(X1,Z)

If ω1 ∈ Hn,0(X1) = H0(X1,Ω
n
X1

) and ω2 ∈ Hn,0(X2) = H0(X2,Ω
n
X2

) are

holomorphic volume forms on X1 and X2, then

φ∗(ω2) = λω1

for some λ ∈ C∗. Furthermore, one has∫
γ
φ∗(ω2) =

∫
φ∗(γ)

ω2

In the relative situation we consider a birational map that induces fibre-

wise birational isomorphism

φ : X1 ��� X2
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If ω1(t) and ω2(t) are volume forms on X1 resp. X2, then

φ∗(ω2(t)) = λ(t)ω1(t)

for some rational function λ(t). So we have

λ(t)

∫
γ(t)

ω1(t) =

∫
γ(t)

φ∗(ω2(t)) =

∫
φ∗(γ(t))

ω2(t)

which shows that the period integrals for X1 and X2 differ by multiplication

by a rational function. So the Picard-Fuchs operators

P(X1, ω1, δ) and P(X2, ω2, δ)

are strictly equivalent.

Proposition 3. Let ϕ : X ��� Y be a birational map between two Calabi-

Yau threefolds and f : X −→ S be a family of Calabi-Yau threefolds such

that X is isomorphic to the fibre Xs0 of X at some point s0 ∈ S, then there

exist an étale neighbourhoods (U, u0) of s0 ∈ S, a family g : Y −→ U with

Y isomorphic to the fibre Yu0
and a fibre-wise birational map Φ : XU ��� Y

that induces the birational map ϕ : X ��� Y at u0.

Proof. As any birational map between smooth Calabi-Yau threefolds is a

composition of flops ([30, Thm. 4.9]) we can consider only the special case

when φ is a single flop, in this situation we have a diagram

X Y

Z

ϕ

where X −→ Z and Y −→ Z are contraction maps. By Proposition 12.2.8

from [31], there exists a finite étale map g : V −→ S such that the sheaf of

flat families of 1-cycles with nonnegative coefficients modulo fiberwise nu-

merical equivalence GN1(g
∗X/V ), defined in 12.2.7 in [31], is a local system

with trivial monodromy. Let X̃ := g∗X be the pullback of X to V . Then we

get a contraction morphism X̃ −→ Z to a family Z −→ V . Let U be the set

of points u ∈ V where the exceptional locus of the contraction X̃u −→ Zu

has dimension 1, U is open and there exists u0 ∈ U with g(u0) = s0.
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By Theorem 11.10 from [31] there exists a flop Φ over U

X̃ Y

Z

U

Φ

that extends the flop ϕ, consequently Y is a family of Calabi-Yau threefolds,

Y is isomorphic to the fibre Yu0
of Y and Φ is a fiberwise birational map.

5.4. Moduli spaces

We consider a smooth Calabi-Yau threefold X with h12 = 1. By the famous

theorem of Bogomolov, Tian [50] and Todorov [51], the local defor-

mation theory of any Calabi-Yau manifold is unobstructed, and so by the

classical deformation theory of Kodaira, Spencer [29] and Kuranishi [32]

X posses a versal deformation over a smooth 1-dimensional disc Δ:

X X

{0} Δ

f

Even if X is projective there will not exist a well-defined moduli space for X,

but rather one has a moduli stack. However, when we choose an ample line

bundle L on X, we can form families over corresponding quasi projective

moduli spaces, see [52]. As a result, we may produce many a priori different

projective families

f : XL −→ SL

which all have X as fibre. Now versality of the Kuranishi family X −→ Δ

implies that if X appears as fibre f−1(s) of any projective family f : X ′ −→
S over a curve S, and having a non-zero Kodaira-Spencer map at s, then this

family is locally analytic isomorphic to the above model family X −→ Δ.
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Theorem 4. Let f1 : X1 −→ S1 and f2 : X2 −→ S2 be two projective
families and

ϕ̂ : X̂1 −→ X̂2

an isomorphism between the formal neighbourhoods X̂i of a fibre Xi =
f−1
i (si) ⊂ Xi, then there exist isomorphisms φ, ψ

U1 U2

V1 V2

φ

f1 f2

ψ

of étale neighbourhoods Ui of Xi ⊂ Xi, si ∈ Si (i = 1, 2) and thus the families
X1 −→ S1 and X2 −→ S2 are related.

Proof. If the families X1 and X2 are versal at points s1 and s2, then this is
a particular case of a very general Theorem (1.7) (Uniqueness) proven by
Artin in [4]. It states that if F is a functor of locally of finite presentation
and ξ ∈ F (A) an effective versal family, then the triple (X,x, ξ) is unique
up to local isomorphism for the étale topology, meaning that if (X ′, x′, ξ′)
is another algebraisation, then there is a third one, dominating both. In our
application we use only this special case.

In the general situation a proof can be given by a straightforward appli-
cation of the nested approximation theorem as stated in [42, Thm. 5.8] (see
also [33]). In the above situation it can be applied as follows: assume we
have two algebraisations X1 −→ S1, X2 −→ S2, given by equations of the
form F (x, t) = 0, G(x′, t′) = 0. We are looking for a algebraic maps

φ(x, t), ψ(t)

that map X1 to X2 and S1 to S2. Hence we look for solutions to the system
of equations

F (x, t) = 0, G(φ(x, t), ψ(t)) = 0

Now as φ̂ is a formal equivalence between X1 and X2 it gives a formal
solutions φ, ψ to the above equations and hence by the nested approximation
theorem we obtain a solution in the ring of algebraic power series.

Lemma 5. Let f1 : X1 −→ S1 and f2 : X2 −→ S2 be two families of Calabi-
Yau threefolds over smooth quasi-projective curves versal at a generic point
and

ϕ : X1 −→ X2
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an isomorphism between fibres Xi = f−1
i (si) ⊂ Xi, then the families X1 −→

S1 and X2 −→ S2 are related.

Proof. Let f : X −→ Δ be a versal family of X, in appropriate local analytic
coordinates at s1 and s2 the families X1 and X2 are locally pullbacks of X by
maps t �→ ta and t �→ tb. Let g1 : S̃1 −→ S̃1 be a covering of degree b totally
ramified at s1, g2 : S̃2 −→ S̃2 be a covering of degree a totally ramified at s2.
Then the pullback families X̃1 := g∗1X1 and X̃2 := g∗2X2 in local coordinates
around g−1

i (si) are locally pullbacks of X by the map t �→ tab, in particular
the formal neighbourhoods of Xi in X̃i are isomorphic and the lemma follows
by Theorem 4.

Theorem 6. Let f1 : X −→ S1 and f2 : Y −→ S2 be two families of
Calabi-Yau threefolds over algebraic curves, versal at a generic point and

ϕ : X ��� Y

a birational map between fibres X = f−1
1 (s1) ⊂ X and Y = f−1

2 (s2) ⊂ Y,
then the Picard-Fuchs operators of families X and Y are related.

Proof. By Proposition 3 there exist an étale neighbourhood (U, u1) of the
point s1 ∈ S1, a family Ỹ −→ U and a fiberwise birational map Φ : XU ���
Ỹ, where XU is the pull-back of X to U . By Proposition 2 Picard-Fuchs
operators of families XU and Ỹ are strictly equivalent. The families Ỹ and
Y are related by Lemma 5 and the theorem follows.

Corollary. Let X be a Calabi-Yau threefold with h1,2(X) = 1 and X −→ S
any non isotrivial family over an algebraic curve S, then the Picard-Fuchs
operator, consider up to relation of relatedness, is a birational invariant of
S.

It is easy to see that under pull-back one can not get rid of a MUM ,
K, C or A-point. Only an F -point with equidistant exponents may turn
into the non-singularity with exponents 0, 1, 2, 3. Note in particular that an
operator with a MUM-point can not be related to an operator without a
MUM-point, etc.

Our motivation to formulate the above theorem came from an attempt
to distinguish double octics with the same Hodge numbers.

Example. The Calabi-Yau threefolds of arrangements 152 and 153 both
have h11 = 41, so a priori could be birational. But no smooth fibre of ar-
rangement 152 is birational to a smooth fibre of arrangement 153. From the
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analysis in next section we will see that the Picard-Fuchs operator of 152
has KCCC as singularities, whereas that of 153 has ACCC singularities,
so these operators are not related.

We do not know of any other means of distinguishing members of these
two families. We see that the Picard-Fuchs operator can be used as a pow-
erful new birational invariant of a variety. We expect our theorem to be
applicable to many other examples.

6. Orphans of order 2

It turns out that there are seven arrangements that lead to a second order
operator. These are the arrangements

4, 13, 34, 72, 261, 264, 270.

The differential equation for each of these cases was computed; the results
are recorded in Appendix B. All operators turn out to be of a very simple
type, directly related to the Legendre differential equation, which is the
hypergeometric equation

Θ2 − 16t(Θ + 1/2)2

and Riemann symbol ⎧⎨
⎩

0 1/16 ∞
0 0 1/2
0 0 1/2

⎫⎬
⎭ .

This also is the Picard-Fuchs operator of the elliptic surface with Kodaira
fibres I2, I2, I

∗
2 . The differential equations in the cases 72 and 270 are a bit

different.

At first sight it is very surprising to find a second order equation for
such octic triple integrals. As explained in [40], the appearance of a certain
maximal automorphism causes the Picard-Fuchs operator to be of order two.
In [15] such maximal automorphism were identified in five of the seven cases.
For the remaining two cases 264 and 270 we do not have such a simple
explanation for the appearence of a second order Picard-Fuchs equation.

A priori, there seem to be two different scenario’s in which the Picard-
Fuchs operator of a family can reduce to an operator of order two. It could
happen that the (1, 1, 1, 1)-VHS splits as sum into a (rigid) (1, 0, 0, 1) Hodge
structure and a variable (0, 1, 1, 0), coming from an elliptic curve. Or it could
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be that the (1, 1, 1, 1)-VHS is a tensor product of a constant (1, 0, 1)-Hodge
structure with a variable (1, 1)-VHS coming from a family of elliptic curves.
This 1, 0, 1 should be the transcendental part of H2 of a K3-surface with
Picard number 20.

In our situation it is always the second alternative that has to occur, as
we are looking at the Picard-Fuchs operator for the period integrals of the
holomorphic volume form ω, which in the first case would be constant.

It is of interest to identify the K3-surface in the geometry of the arrange-
ment. For example, for the octic corresponding to arrangement 13

Yt : 0 = u2 − xyz(x+ y)(y + z)w(x− z − w)(x− z − tw)

one can understand its relation to the K3-surface in the following way. Re-
placing u by u/(x− z) we see the double octic is equal to the normalisation
of the double dectic

u2 = xyz(x+ y)(y + z)(x− z)w(x− z − w)(x− z − tw)(x− z).

The first 6 factors now only depend on the variables x, y, z and determine a
double sextic K3-surface S with equation

p2 = xyz(x+ y)(y + z)(x− z)

It is the famous most algebraic K3-surface [53], which comes with the
weight 3 modular form named 16 in appendix A.

The last four factors only depend on w and ξ := x−z, with t as parameter
and determine a double quartic family of elliptic curves Et given by the
equation

q2 = w(ξ − w)(ξ − tw)ξ

By dividing out the involution ι induced by p �→ −p, q → −q acting on
S×Et we get back our double dectic, u = pq. Hence we see that our original
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double octic is birational to

S × Et/ι −→ Yt

so that we see that Yt is a simple instance of the Borcea-Voisin construction,
see [11].

It turns out that, unexpectedly, in all cases except 270 we end up with
the modular form 16 as constant factor.

In case 270 we get modular form 8, attached to the double sextic K3-
surface

p2 = xyz(x− y)(y + z)(x− z)

These two K3-surfaces appear in a nice pencil; in [21] one finds a very
detailed account of their geometry and arithmetic.

7. Orphans of order 4

Of the 63 families it tuns out that 18 are fourth order orphans. These are
much more interesting and are collected in Appendix C. We sort them ac-
cording to types of singularities that appear.

7.1. The two KKCC-operators

It turns out that there are two different but similar operators with two
points of type K and two points of type C. In each case there is a pair of
arrangements related to them.

The arrangements 33 and 70 with h11 = 49.

These two arrangements are birational, via the map

(x, y, z, v) �−→ (tyv, xy − yz, tzv − xz + z2, x2 − xz − txv).
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(Here and below we will always refer to the equations of the arrangements
given in Appendix C.)

The Picard-Fuchs operator for 33 has Riemann symbol⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 1 2 ∞
0 0 0 1/2
0 1/2 1 1/2
1 1/2 1 3/2
1 2 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

from which we see that 0 and ∞ are K-points, and 1 and 2 are C-points.
The operator for 70 differs from it by t �→ −t. This operator was obtained
in [13] by conifold expansion.

As explained above, to each rational K-point there is attached a weight
three modular form and to each rational C-form a weight four modular form.
It is well-known that these forms can be determined by counting points over
finite fields and we will omit all details on their calculation.

We found it convenient to write the names of these forms above the cor-
responding points of the Riemann-symbol, as to form a decorated Riemann-
symbol. ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8 32/2 8/1 16

0 1 2 ∞
0 0 0 1/2
0 1/2 1 1/2
1 1/2 1 3/2
1 2 2 3/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(For the naming of the modular forms we are using the reader is referred to
Appendix A.) We see that two different types of K3-surfaces, corresponding
to the forms 8 and 16 should appear in the semi-stable model of the singular
fibres. This is in accordance with the fact that there is no symmetry that
fixes the C-points and interchanges the K-points.

The arrangements 97 and 98 with h11 = 45.

This is the other pair of arrangements that also lead to an operator with
two K and two C-points. The arrangements 97 and 98 are also birational,
via the map

(x, y, z, v) �−→ ((tv − z − v) (x+ y + z + v) , txz, (−tv + z + v)y,

(tv − z − v)(x+ y))
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The decorated Riemann symbol of the operator for 97 is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

32/1 8 8/1 8

0 −1 −2 ∞
0 0 0 1/2
1/2 0 1 1/2
1/2 1 1 3/2
1 1 2 3/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

By shifting the exponents by 1/2 in 0 and −1/2 in ∞ followed by a simple
Möbius transformation one can transform it to operator 98.

We again see twoK points, but this time we find that at both of them the
modular form is 8, which suggests that the operator of 98 has a symmetry
that interchanges the two K-points. Indeed, by shifting the finite C-point
to the origin, one finds that the operator is symmetric under t �→ −t and
thus can be pulled-back by the squaring map from the nice operator

A := Θ2(Θ− 1)2 + tΘ2(32Θ2 + 3) + 4 t2 (4Θ + 1) (2Θ + 1)2 (4Θ + 3)

which has extended Riemann symbol⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8 8/1 32/1

0 −1/16 ∞
0 0 1/4
0 1/2 1/2
1 1/2 1/2
1 1 3/4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The symmetry of the operator is also visible as a symmetry of the ar-
rangements.

7.2. The two KCCC operators

It turns out that there are also two different operators with a single K point,
but with three additional C-points. The first of these operators is related to
two essentially different pairs of double octic arrangements, namely

The arrangements 35 and 71 with h11 = 49.
and
The arrangements 247 and 252 with h11 = 37.

As the Riemann-symbol suggests, the Picard-Fuchs operators for these
four cases are related by a simple Möbius transformation and multiplication
with an algebraic function and we will only analyse one of the cases.
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The arrangements 247 and 252 are related by generically 2:1 corre-
spondence ([15, Thm. 6.3]) that explain the equality of the Picard-Fuchs
operators, but we were unable to find any correspondence between 35 and
71. The coincidence of the Picard-Fuchs operators (up to transformation)
strongly suggest that there exist a correspondence between 35 and 247,
but again we were unable to find it. This is an illustration of the power of
Picard-Fuchs operators to make geometrical predictions.

The decorated Riemann symbol of 35 is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8/1 8/1 8 8/1

−1 0 1 ∞
0 0 0 1/2
1 1/2 0 1
1 1/2 1 1
2 1 1 3/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

so at all C-points we find the modular form 8/1.
Indeed, the operator of 35 has symmetries interchanging the C-points.

If we shift the exponents at −1 by 1/2, at ∞ by −1/2, and then bringing the
K-point to 0 and the C-point at −1 to ∞, we obtain an operator symmetric
under t �→ −t, so it is seen to be pull-back by the squaring map of

B := Θ2 (2Θ− 1)2 + t
(
4Θ2 + 2Θ + 1

)
(4Θ + 1)2

+ t2 (4Θ + 1) (4Θ + 3)2 (4Θ + 5)

with decorated Riemann-Symbol⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8 8/1 8/1

0 −1/8 ∞
0 0 1/4
0 1/2 3/4
1/2 1/2 3/4
1/2 1 5/4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

At both conifold points we have modular form 8/1, and it turns out that
there is a further symmetry in the operator that exchanges these and thus
can be obtained as pull-back from yet another operator with three singular
points:

Θ2 (4Θ− 1)2 + 2 t (8Θ + 1)
(
32Θ3 + 28Θ2 + 19Θ + 4

)
+ t2 (8Θ + 1) (8Θ + 9) (8Θ + 5)2



32 S�lawomir Cynk and Duco van Straten

Its decorated Riemann symbol is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8 ? 8/1

0 −1/8 ∞
0 0 1/8
0 1/2 5/8
1/4 1 5/8
1/4 3/2 9/8

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Note that now there appears a singularity at −1/8 with monodromy of order
2. So the Calabi-Yau threefold appearing at this point is special, but the ?
indicates that we were not able yet to identify any modular forms.

The arrangements 152 and 198 with h11 = 41.

These two arrangement give rise to another operator with one K and
three C-points. The coincidence of Hodge numbers and Picard-Fuchs oper-
ator (up to equivalence) suggest, that the two arrangements are birational.
Again, we were unable to find the map.

The decorated Riemann symbol of 152 is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8 8/1 32/1 8/1

−1 0 1 ∞
0 0 0 1/2
1/2 1/2 0 1
1/2 1/2 2 1
1 1 2 3/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The operator of 198 is equivalent to it: by shifting the exponents at −1 by
1/2 and at ∞ by −1/2.

The appearance of the forms 8/1 at both 0 and ∞ suggests that there
is a symmetry interchanging these points. And indeed, it turns out that the
operator for 152 is also a pull-back from the operator A!

7.3. The ACCC-operator

The arrangements 153, 197 with h11 = 41

The arrangements 153 and 197 are birational, via the map
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(x, y, z, v) �−→ ((xt+ vt− y)tv, (xt+ vt− y − z)y, (x+ v)tz,

(xt+ vt− y)tx)

The decorated Riemann symbol for 153 is:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

32/1 32/2 8/1 32/2

0 −1 −2 ∞
0 0 0 1/2
1/2 1/2 1/2 1
1/2 1/2 3/2 1
1 1 2 3/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The point t = −2 is very remarkable. By expanding the solutions around the

singular point −2 one sees that the monodromy is of order two; no logarith-

mic terms arise. As a result, the corresponding limiting MHS remains pure

of weight three. On the other hand, the arrangement at t = −2 specialises

to the rigid arrangement 93 and the corresponding double octic has a rigid

Calabi-Yau (with modular form 8/1) as resolution. This implies that any

semi-stable fibre at t = −2 needs to have further components to account

for the change in cohomology between special fibre at −2 and general fibre.

We note that the theorem of Kulikov implies that a similar phenomenon

can not happen for K3-surfaces. This and other examples will be studied in

more detail in future paper.

As suggested by the modular forms, there could be a symmetry inter-

changing the two 32/2 points. By first shifting exponents by 1/2 at −2 and

−1/2 at ∞ and then bringing −2 to ∞, the operator is pulled back from

the nice operator with three singular points:

C := Θ(4Θ− 1)2(2Θ− 1)− t(4Θ + 1)2(4Θ2 + 2Θ + 1)

+ t2(4Θ + 1)(2Θ + 1)(4Θ + 5)(Θ + 1)

with extended Riemann symbol

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

32/1 32/2 8/1

0 1 ∞
0 0 1/4
1/4 1/2 1/2
1/4 1/2 1
1/2 1 5/4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.
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7.4. The KCCCC-operator

The arrangement 243 (h11 = 39) leads to the rather complicated operator

Θ (Θ− 2) (Θ− 1)2 − 1

6
tΘ (Θ− 1)

(
19Θ2 − 19Θ + 9

)
+

1

3
t2Θ2

(
11Θ2 + 4

)

− 1

24
t3
(
11Θ2 + 11Θ + 5

)
(2Θ + 1)2 +

1

48
t4 (2Θ + 3)2 (2Θ + 1)2

Its decorated Riemann symbol is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

12/1 32/2 6/1 8/1 8

0 1 3
2 2 ∞

0 0 0 0 1/2
1 1/2 1 1 1/2
1 1/2 1 1 3/2
2 1 2 2 3/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

We claim it can not be simplified further, as the modular forms at the
cusps are all different.

7.5. The ACCCCK-operator

By [15, Thm. 6.2] arrangements 250 and 258 define birational families of
Calabi-Yau threefolds with h11 = 37. The decorated Riemann-symbol of 250
is ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6/1 8/1 h 8/1 6/1 8

−2 −1 −1/2 0 1 ∞
0 0 0 0 0 1/2
1 1/2 1 1/2 1 1/2
1 1/2 3 1/2 1 3/2
2 1 4 1 2 3/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Very remarkably, at the apparent singularity at the point−1/2 there appears
the Hilbert-modular form h of level 6

√
2 and weight (4, 2). When we shift this

apparent singularity to the origin, we obtain an operator that is symmetric
with respect to the involution t �→ −t. But there is no obvious corresponding
symmetry in the family. Counting points, it appears that the number of
points of the fibres at t and −t are equal or opposite mod p, according to

the quadratic character
(
2
p

)
. In fact the transformation
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⎛
⎜⎜⎝

x
y
z
v

⎞
⎟⎟⎠

�−→

⎛
⎝2 (−y − z + v)x (x+ v + y + z) ((t+ 1/2) y − v − x− z)

4 (x+ v + y + z) (−1/2 z2 + (v/2− x/2− y) z − 1/2 y2 + (v/2− x/2) y + vx) z
(y2 + (−v + x+ 2z) y + z2 + (x− v) z − 2vx) (x+ v + y + z) ((t+ 1/2) y − v − x+ z)
(y + z) (v − x− y − z)2 (ty − v − x+ y/2− z)

⎞
⎠

gives a correspondance between a fiber of the family and the quadratic
twist by 2 of the opposite fiber. In particular, the modular forms labelled
8/1 actually occuring differ by this character. From this state of affairs it
seems natural that at the symmetry point the Hilbert modular form for

√
2

appears. We plan study this example more carefully in a future paper.
We remark that although the modular forms at corresponding fibres 0

and −1 are in both cases 8/1, they correspond to two non-birational rigid
Calabi-Yau configuration 69 (h11 = 50) and 93 (h11 = 46).

Similarly, at 1 and −2 we have modular form 6/1, but rigid Calabi-Yau
configurations 245 (h11 = 38) resp. 240 (h11 = 40). So it seems improbable
that there is a birational map relating the fibre at t to the fibre at −1/2− t.
Geometrically, the symmetry of the Picard-Fuchs operator is surprising.

Using the symmetry we see that the operator is pulled back from a
simpler operator with the following Riemann symbol:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h 8/1 6/1 ∞
0 1 9 ∞
0 0 0 1/4
1/2 1/2 1 1/4
3/2 1/2 1 3/4
2 1 2 3/4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

7.6. The KCCCCC-operator

Arrangement 248 with h12 = 37.
Decorated Riemann symbol⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

12/1 6/1 16 6/1 12/1 32/1

−2 −3/2 −1 −1/2 0 ∞
0 0 0 0 0 1/2
1 1 0 1 1 1
1 1 2 1 1 1
2 2 2 2 2 3/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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There is a symmetry pairing the points with same modular form and
fixing the points belonging to the modular forms 16 and 32/1. First shift
the K-point to 0, then the operator is seen the be pull-back via quadratic
map from an operator with Riemann symbol

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

16 12/1 6/1 32/1

0 1 1/4 ∞
0 0 0 1/4
0 1 1 1/2
1 1 1 1/2
1 2 2 3/4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

This symmetry, after having discovered it from the operator, can be seen
in the arrangement.

7.7. The AACCCCCC-operator

Arrangements 266 and 273 have both h11 = 37 and have rather com-
plicated but identical Picard-Fuchs equations, with Riemann symbol

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6/1 32/1 6/1 32/1 6/1 ? ? 32/1

−1 −1/2 −1/4 0 1/2 (−1 +
√
−3)/4 (−1−

√
−3)/4 ∞

0 0 0 0 0 0 0 1/2
1 1/2 1 1/2 1 1 1 1
1 1/2 1 1/2 1 3 3 1
2 1 2 1 2 4 4 3/2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Arrangement 266 and 273 both have 8 quadruple points and no five-fold
point or triple lines. The difference between the two is rather subtle; 266
contains six planes which are in general position, which is not the case for
273. In 266 there are six of the quadruple points in a plane, which is not
the case for 273, etc. So clearly the two configurations are projectively very
different. On the other hand, they have the same Hodge number h11 = 37,
and the equality of their Picard-Fuchs operators clearly suggest the varieties
belonging to the two arrangements are birational, but were unable to find
any transformation.

The operator can be reduced to one with three singular points via the
following steps

• Make the exponents at all 32/1-points equal to (0, 1, 1, 2), by exponent-
shift.
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• Translate the A-points to 0 and ∞. Of course, the resulting operator
has coefficients in Q(

√
−3).

• Make a pull-back of order three, i.e. we use t3 as new coordinate.
• The operator has now four singular points, where the points at 0 and
∞ have exponents 0, 1/3, 1, 4/3. Bring the two other points to 0 and
∞.

• The result is an operator invariant under t �→ −t. Make a quadratic
pull-back and bring the A point to the origin.

• The result is, after a scaling of the coordinate, the following operator

4Θ(3Θ− 1)(Θ− 1)(3Θ− 4) + 3tΘ(3Θ− 1)(288Θ2 − 96Θ + 35)

+ 36t2(12Θ + 1)(3Θ + 1)2(12Θ + 7)

with decorated Riemann symbol⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

? 6/1 32/1

0 −1/36 ∞
0 0 1/12
1/3 1/2 1/3
1 1/2 1/3
4/3 1 7/12

F C C

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

We were informed by Stefan Reiter that the operators with three singular
points that appeared in 7.1, 7.2, 7.3 and 7.7, up to shift of exponents, are
symplectically rigid and can be constructed using convolutions as in [7], but
were not included in that paper because they do not have a MUM point and
hence do not classify as a Calabi-Yau operator.

8. Concluding remarks and questions

As for families of K3-surfaces or other varieties, there is nothing special
about families of Calabi-Yau three-folds that avoid having degenerations
with maximal unipotent monodromy points and still have monodromy
Zariski dense in Sp4(C). One may ask further questions about the possible
distribution of types of singularities. For example, the examples with sec-
ond order Picard-Fuchs operators give variations which have only K-points.
Do there exist families with only K-points and Picard-Fuchs operator of
order four? Similarly, do there exists families with only C-points? It seems
that only the current general lack of examples is the reason for this kind of
ignorance.
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As for mirror symmetry, the SYZ-approach via dual torus fibrations
(T-duality), [49], does in no way presupposes the presence of a MUM-point
in the moduli space. The point is rather that the absence of a MUM-point
does not give a clue where to look for an appropriate torus fibration. How-
ever, there is a the well-known idea, going back to Miles Reid [39], that
the different families of Calabi-Yau threefolds may all be connected via ge-
ometrical transitions. The most prominent such transition is the conifold
transition, where we contract some lines on a Calabi-Yau threefold to form
nodes, and smooth these out to produce another Calabi-Yau threefold with
different Hodge numbers. As has been suggested by Morrison, [37], mirror
symmetry can, in some sense, be prolongated over such transitions, and in
the case of the above mentioned conifold transition, the mirror symmetric
process is that of nodal degeneration, followed by a crepant resolution. So if
we connect an orphan family to another family that has a MUM-point via
a transition, one is tempted to try construct a mirror manifold for orphans
using this transition to a family with a MUM-point.

We have seen in section 1 that the rigid Calabi-Yau from arrangement
69 appears as a member of the orphan family 70. But 69 also is member of
the family 100, which contains even two MUM-points.

Family of arrangements 100

So we have the following picture

In the second part of the paper we will report on the double octics
families that contain a MUM-point.
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Appendix A

We will encounter certain modular forms over and over again. For the con-

venience of the reader we list here the first few Fourier coefficients of these

forms.

Weight two modular form: Associated to the elliptic curve

y2 = x3 − x

of conductor 25 = 32 there is the unique cusp form, [25]:

f32 := q

∞∏
n=1

(1− q4n)2(1− q8n)2 ∈ S2(Γ0(32))

Name 2 3 5 7 11 13 17 19 23 29

f32 0 0 −2 0 0 6 2 0 0 −10

Weight 3 modular forms: The weight three cusp forms for Γ0(N) all will

appear with a non-trivial character that will play no role for us. The forms

of level 8 and 16 are uniquely determined by there level, which we use to

name them.

Name 2 3 5 7 11 13 17 19 23 CM − type

16 0 0 −6 0 0 10 −30 0 0 Q(
√
−1)

8 −2 −2 0 0 14 0 2 −34 0 Q(
√
−2)

These two forms are η-products:

8 := q

∞∏
n=1

(1− qn)2(1− q2n)(1− q4n)(1− q8n)2

16 := q

∞∏
n=1

(1− q4n)6

The Galois representation associated to the form 8 is the tensor square of

the Galois action associated to the form f32. For more information on weight

3 forms we refer to [44].
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Weight 4 cusp forms

For the weight 4 cusp forms for Γ0(N) we will used the notation used in
the book of Meyer [35].

Name 2 3 5 7 11 13 17 19 23

6/1 −2 −3 6 −16 12 38 −126 20 168

8/1 0 −4 −2 24 −44 22 50 44 −56

12/1 0 3 −18 8 36 −10 18 −100 72

32/1 0 0 22 0 0 −18 −94 0 0

32/2 0 8 −10 16 −40 −50 −30 40 48

The first two of these forms are also nice η-products:

6/1 = q

∞∏
n=1

(1− qn)2(1− q2n)2(1− q3n)2(1− q6n)2

8/1 = q

∞∏
n=1

(1− q2n)4(1− q4n)4

The Galois representation associated to the form 32/1 is the tensor cube of
the Galois action associated to the form f32.

There is also one Hilbert modular form h for the field Q(
√
2) that plays a

role. It is the unique cuspform of weight (4, 2) and level 6
√
2; its coefficients

for the first inert primes are:

Name 2 3 5 7 11 13 17 19 23

h 0 9 10 4
√
2 + 16 −726 2938 16

√
2− 62 6650 −8

√
2 + 40

Appendix B

4. xyzv (x+ y) (x+ ty + tz − v) (x+ y + tz − v) (y + z)

Θ2 − t
(
Θ+ 1

2

)2⎧⎨
⎩

1 0 ∞
0 0 1/2
0 0 1/2

⎫⎬
⎭

13. xyzv (z + y) (x− z − v) (x+ y) (x− z + tv)

Θ2 + t(Θ + 1
2)

2
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⎧⎨
⎩

0 −1 ∞
0 0 1/2
0 0 1/2

⎫⎬
⎭

34. xyzv (x+ y) (x+ z) (x+ y + z + v) (y − z + tv)

Θ2 − t2(Θ + 1
2)

2⎧⎨
⎩

1 0 −1 ∞
0 0 0 1/2
1/2 0 1/2 1/2

⎫⎬
⎭

72. xyzv (x− y − v) (x+ y + z) (y + tz + tv) (y + z + v)

Θ2 + t
(
−3Θ2 − 2Θ− 1

2

)
+ t2 (Θ + 1) (2Θ + 1)⎧⎨

⎩
1 1/2 0 ∞
0 0 0 1/2
0 1/2 0 1

⎫⎬
⎭

261. xyzv (x− y − z + v) (x+ y + z + v) (x− y + tz − tv)

× (x+ y + tz + tv)

Θ2 − t2 (Θ + 1)2⎧⎨
⎩

1 0 −1 ∞
0 0 0 1
0 0 0 1

⎫⎬
⎭

264. xyzv (x+ (2− t)v + 2 y − (2− t) z) (−x− y + 2 z − (2− t)v)

× (x+ y + tz) (y + 2− 2 z)

Θ2 − 1/4 t2 (Θ + 1)2⎧⎨
⎩

2 0 −2 ∞
0 0 0 1
0 0 0 1

⎫⎬
⎭

270. xyzv (x+ y + z) (y + z + v) (xt− 2 y + tz + tv) (−x− 2 y + tz − v)

Θ2 + t
(
3
2 Θ

2 + 3
2 Θ+ 1

2

)
+ 1

2 t
2 (Θ + 1)2⎧⎨

⎩
0 −1 −2 ∞
0 0 0 1
0 0 0 1

⎫⎬
⎭

Appendix C

33. xyzv (x+ y) (y + z) (x− z + v) (x− y − z + tv)

Θ2 (Θ− 1)2− 1

8
tΘ2

(
20Θ2 + 3

)
+

1

16
t2
(
8Θ2 + 8Θ + 3

)
(2Θ + 1)2
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− 1

32
t3 (2Θ + 3)2 (2Θ + 1)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 1 2 ∞
0 0 0 1/2
0 1/2 1 1/2
1 1/2 1 3/2
1 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

35. xyz (x− v) (y − v) (z − v) (x− y) (x+ ty + (1− t)z − v)

Θ (Θ− 1)
(
Θ− 1

2

)2 − 1
4 tΘ

2
(
4Θ2 + 3

)
− 1

4 t
2
(
Θ2 +Θ+ 1

)
× (2Θ + 1)2 + 1

4 t
3 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 0 −1 ∞
0 0 0 1/2
0 1/2 1 1
1 1/2 1 1
1 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

70. yxzv (x+ ty) (y − z − v) (x− y − v) (x− y + z)

Θ2 (Θ− 1)2 + 1
8 tΘ

2
(
20Θ2 + 3

)
+ 1

16 t
2
(
8Θ2 + 8Θ + 3

)
(2Θ + 1)2

+ 1
32 t

3 (2Θ + 3)2 (2Θ + 1)2⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −1 −2 ∞
0 0 0 1/2
0 1/2 1 1/2
1 1/2 1 3/2
1 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

71. xyzv (x+ y) (x+ y + z + v) (ty − z − v) (−x+ ty − z)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ tΘ2

(
4Θ2 + 1

)
+ 1

16 t
2
(
20Θ2 + 20Θ + 9

)
× (2Θ + 1)2 + 1

8 t
3 (2Θ + 3)2 (2Θ + 1)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 −1/2 −1 ∞
0 0 0 1/2
1/2 1 1/2 1/2
1/2 1 1/2 3/2
1 2 1 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

97. xyzv (x+ y) (x+ y + z + v) (−x+ tz − v) (y − v − z)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ 1

8 tΘ
2
(
20Θ2 + 7

)
+ 1

32 t
2
(
16Θ2 + 16Θ + 7

)
(2Θ + 1)2 + 1

32 t
3 (2Θ + 3)2 (2Θ + 1)2
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −1 −2 ∞
0 0 0 1/2
1/2 0 1 1/2
1/2 1 1 3/2
1 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

98. xyzv (x+ z − v) (x+ z + y) (y + z + v) (y + tz + tv)

Θ2 (Θ− 1)2 − 1
4 tΘ

2
(
16Θ2 + 3

)
+ 1

4 t
2
(
5Θ2 + 5Θ + 3

)
(2Θ + 1)2

−1
2 t

3 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 1/2 0 ∞
0 0 0 1/2
0 1 0 1
1 1 1 1
1 2 1 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

152. xyzv (x+ v − y − z) (x+ y + z + v) (x− y + tz − tv) (y + v)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ 1

2 tΘ
(
2Θ3 − 8Θ2 + 6Θ− 1

)
+t2

(
−2Θ4 − 4Θ3 − 11

4 Θ2 − 17
4 Θ− 11

16

)
+t3

(
−2Θ4 + 1

4 Θ
2 + 7

2 Θ+ 9
8

)
+ 1

16 t
4 (2Θ + 1)

(
8Θ3 + 44Θ2 + 62Θ + 25

)
+1

4 t
5 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 0 −1 ∞
0 0 0 1/2
1/2 1/2 0 1
1/2 1/2 2 1
1 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

153. xyzv (x+ z + y) (−x+ ty − v) (−x+ ty − z − v) (y + z + v)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ 1

8 tΘ
(
28Θ3 − 16Θ2 + 17Θ− 2

)
+t2

(
19
4 Θ4 + 7

2 Θ
3 + 39

8 Θ2 + 13
8 Θ+ 19

64

)
+t3

(
25
8 Θ4 + 6Θ3 + 109

16 Θ2 + 7
2 Θ+ 89

128

)
+ 1

64 t
4 (2Θ + 1)

(
32Θ3 + 80Θ2 + 82Θ + 29

)
+ 1

32 t
5 (2Θ + 3) (2Θ + 1) (Θ + 1)2



44 S�lawomir Cynk and Duco van Straten

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −1 −2 ∞
0 0 0 1/2
1/2 1/2 1/2 1
1/2 1/2 3/2 1
1 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

197. xyzv (x− y − z + v) (x+ tz + v) (x+ ty + tz) (ty + tz + v)

Θ2
(
Θ− 1

2

) (
Θ+ 1

2

)
+ 1

8 t (2Θ + 1)
(
32Θ3 + 16Θ2 + 18Θ + 5

)
+t2

(
25Θ4 + 52Θ3 + 121

2 Θ2 + 37Θ + 145
16

)
+t3

(
38Θ4 + 124Θ3 + 183Θ2 + 133Θ + 307

8

)
+t4 (Θ + 1)

(
28Θ3 + 100Θ2 + 133Θ + 63

)
+2 t5 (Θ + 2) (Θ + 1) (2Θ + 3)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 −1/2 −1 ∞
−1/2 0 0 1
0 1/2 1/2 3/2
0 3/2 1/2 3/2
1/2 2 1 2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

198. xyzv (x− y − v) (x+ y + z) (x− y − z + tx) (y + z + v)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ 1

8 tΘ
2
(
24Θ2 + 5

)
+t2

(
13
4 Θ4 + 13

2 Θ3 + 81
16 Θ

2 + 29
16 Θ+ 5

16

)
+t3

(
3
2 Θ

4 + 6Θ3 + 8Θ2 + 4Θ + 25
32

)
+ 1

64 t
4 (2Θ + 5)2 (2Θ + 1)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 −1 −2 ∞
0 0 0 1/2
1/2 1/2 1/2 1/2
1/2 1/2 1/2 5/2
1 1 1 5/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

243. xyzv (x+ y + v) (x+ y + z) (x+ ty + z + v) (y + z + v)

Θ (Θ− 2) (Θ− 1)2 − 1
6 tΘ (Θ− 1)

(
19Θ2 − 19Θ + 9

)
+1

3 t
2Θ2

(
11Θ2 + 4

)
− 1

24 t
3
(
11Θ2 + 11Θ + 5

)
(2Θ + 1)2

+ 1
48 t

4 (2Θ + 3)2 (2Θ + 1)2⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 3/2 1 0 ∞
0 0 0 0 1/2
1 1 1/2 1 1/2
1 1 1/2 1 3/2
2 2 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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247. xyzv (x− y − v) (x+ y + z) (−x+ tz − tv) (y + z + v)

Θ2 (Θ− 1)2 + tΘ2
(
5Θ2 + 1

)
+ t2

(
2Θ2 + 2Θ + 1

)
(2Θ + 1)2

+t3 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −1/2 −1 ∞
0 0 0 1/2
0 1/2 1 1
1 1/2 1 1
1 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

248. xyzv (x+ z + v) (x+ y + z) (x+ (y + 1)y − tz + v) (y − z − v)

Θ (Θ− 2) (Θ− 1)2 + 1
6 tΘ (Θ− 1)

(
37Θ2 − 61Θ + 36

)
+1

6 t
2Θ

(
91Θ3 − 124Θ2 + 121Θ− 36

)
+t3

(
115
6 Θ4 − 5

3 Θ
3 + 107

6 Θ2 + 2
3 Θ+ 1

2

)
+t4

(
79
6 Θ4 + 16Θ3 + 113

6 Θ2 + 8Θ + 3
2

)
+1

6 t
5 (2Θ + 1)

(
14Θ3 + 29Θ2 + 27Θ + 9

)
+1

6 t
6 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 −1/2 −1 −3/2 −2 ∞
0 0 0 0 0 1/2
1 1 0 1 1 1
1 1 2 1 1 1
2 2 2 2 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

250. xyzv (x+ y + z) (x+ ty − z + v) (x+ z + v) (y + z − v)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ 1

8 tΘ
(
44Θ3 − 96Θ2 + 65Θ− 12

)
+t2

(
19
2 Θ4 − 23Θ3 + 131

8 Θ2 − 47
8 Θ− 1

4

)
+t3

(
5
2 Θ

4 − 20Θ3 − 23
4 Θ− 17

32

)
− 1

32 t
4
(
68Θ2 + 100Θ + 53

)
(2Θ + 1)2

−1
4 t

5
(
8Θ2 + 14Θ + 9

)
(2Θ + 1)2 − 1

8 t
6 (2Θ + 3)2 (2Θ + 1)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 0 −1/2 −1 −2 ∞
0 0 0 0 0 1/2
1 1/2 1 1/2 1 1/2
1 1/2 3 1/2 1 3/2
2 1 4 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

252. xyzv (x+ y + v) (x+ y + z) (−x+ tz + v) (−x− 2 y + tz − v)

Θ2 (Θ− 1)2 + 1
2 tΘ

2
(
5Θ2 + 1

)
+ 1

4 t
2
(
2Θ2 + 2Θ + 1

)
(2Θ + 1)2
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+1
8 t

3 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −1 −2 ∞
0 0 0 1/2
0 1/2 1 1
1 1/2 1 1
1 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

258. xyzv (x− y + 2 z − 2v) (x− y + z − v) (x+ ty + z + tv)

× (y − z + 2v)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ 1

8 tΘ
(
20Θ3 + 48Θ2 − 21Θ + 6

)
+t2

(
−Θ4 + 19Θ3 + 39

2 Θ2 + 47
8 Θ+ 11

8

)
+t3

(
−5Θ4 − 5Θ3 + 61

2 Θ2 + 127
8 Θ+ 37

8

)
+t4

(
−Θ4 − 21Θ3 − 21

2 Θ2 − 9
8 Θ+ 7

8

)
+1

8 t
5 (2Θ + 1)

(
10Θ3 − 9Θ2 − 27Θ− 13

)
+1

4 t
6 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 0 −1/2 −1 −2 ∞
0 0 0 0 0 1/2
1 1/2 1 0 1 1
3 1/2 1 1 1 1
4 1 2 1 2 3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

266. xyzv (2x+ y + 2v) (x+ (t+ 1)y − z + v) (x+ ty + z) (y − 2 z + 2v)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ 1

4 tΘ
(
44Θ3 − 48Θ2 + 37Θ− 6

)
+t2

(
50Θ4 − 56Θ3 + 40Θ2 − 5

2 Θ+ 3
8

)
+t3

(
120Θ4 − 288Θ3 − 75Θ2 − 105Θ− 21

)
+t4

(
112Θ4 − 1008Θ3 − 718Θ2 − 720Θ− 303

2

)
+t5

(
−224Θ4 − 2464Θ3 − 1924Θ2 − 1628Θ− 324

)
+t6

(
−960Θ4 − 4224Θ3 − 4296Θ2 − 2448Θ− 450

)
+t7

(
−1600Θ4 − 4992Θ3 − 6368Θ2 − 3504Θ− 696

)
−32 t8 (2Θ + 1)

(
22Θ3 + 57Θ2 + 59Θ + 21

)
−128 t9 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎨
⎪⎪⎩

1/2 0 −1/4 −1/2 −1 (−1 +
√
−3)/4 (−1−

√
−3)/4 ∞

0 0 0 0 0 0 0 1/2
1 1/2 1 1/2 1 1 1 1
1 1/2 1 1/2 1 3 3 1
2 1 2 1 2 4 4 3/2

⎫⎪⎪⎬
⎪⎪⎭
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273. xyzv (x+ y + z) (2x− 2 z − v) (x+ 2 ty − z + tv) (2 y + 2 z + v)

Θ (Θ− 1)
(
Θ− 1

2

)2
+ 1

4 tΘ
(
44Θ3 − 48Θ2 + 37Θ− 6

)
+t2

(
50Θ4 − 56Θ3 + 40Θ2 − 5

2 Θ+ 3
8

)
+t3

(
120Θ4 − 288Θ3 − 75Θ2 − 105Θ− 21

)
+t4

(
112Θ4 − 1008Θ3 − 718Θ2 − 720Θ− 303

2

)
+t5

(
−224Θ4 − 2464Θ3 − 1924Θ2 − 1628Θ− 324

)
+t6

(
−960Θ4 − 4224Θ3 − 4296Θ2 − 2448Θ− 450

)
+t7

(
−1600Θ4 − 4992Θ3 − 6368Θ2 − 3504Θ− 696

)
−32 t8 (2Θ + 1)

(
22Θ3 + 57Θ2 + 59Θ + 21

)
−128 t9 (2Θ + 3) (2Θ + 1) (Θ + 1)2⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 0 −1/4 −1/2 −1 (−1 +
√
−3)/4 (−1−

√
−3)/4 ∞

0 0 0 0 0 0 0 1/2

1 1/2 1 1/2 1 1 1 1

1 1/2 1 1/2 1 3 3 1

2 1 2 1 2 4 4 3/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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